Research
Research   Academics & Research   VA-MD Vet Med Home

Post-DVM Training Program on Animal Model
Research for Veterinarians


The Training Program:

Jennifer Gillespie (DVM/MS student, left) and Kijona Key (DVM/PhD, right) perform a procedure on a pig.

Veterinarians are uniquely qualified to conduct biomedical research in the field of comparative medicine using animal models, which have been instrumental in understanding the pathogenesis and mechanism of human diseases. Unfortunately, the majority of veterinarians do not pursue research careers, in part due to the lack of research training opportunities. Consequently, there is a critical shortage of veterinarians with research backgrounds in academic institutions, government and corporate settings across the nation.

The National Institutes of Health has funded a post-DVM "Animal Model Research for Veterinarians (AMRV)" training program at the Virginia-Maryland Regional College of Veterinary Medicine (VA-MD Vet Med). This program will train veterinarians in the skills of a researcher, and help them launch a successful research career in the areas of animal models of infectious diseases, immunology, molecular biology, physiology, toxicology, and nutrition. Mentors participating in this training program are conducting cutting-edge research in the areas of animal models for human diseases, and their research projects are well funded by the National Institutes of Health.

Trainees will be required to enter a M.S. or Ph.D. graduate program that will expose them to state-of-the-art research skills and challenge them to become independent problem-solvers. At the end of the training program, trainees are expected to launch an independent biomedical research career, and assume leadership roles related to the nation's biomedical research agenda in academia, government, and industry.


Program Administration

X.J. Meng, MD, PhD
Program Director
University Distinguished Professor
Department of Biomedical Sciences and Pathobiology
VA-MD Regional College of Veterinary Medicine
xjmeng@vt.edu

Roger J. Avery, PhD
Program Co-Director
Senior Associate Dean for Research and Graduate Studies
Professor of Virology
VA-MD Regional College of Veterinary Medicine
avery@vt.edu

Jessica E. Adkins, PhD
Program Support Staff
Grants and Contracts Manager
VA-MD Regional College of Veterinary Medicine
jeadkins@vt.edu

Becky Jones
Program Support Staff
VA-MD Regional College of Veterinary Medicine
bjones57@vt.edu

Faculty Mentors and Their Research:

Immunology and Inflammation
Dr. Ansar Ahmed

Ansar Ahmed, DVM, Ph.D., Head of Department of Biomedical Sciences and Pathobiology and Professor of Immunology (ansrahmd@vt.edu, 540-231-5591). By using relevant animal models for inflammation and autoimmune diseases, the laboratory focus is to investigate: (1) the molecular basis of how pro-inflammatory cytokines are induced and decipher aberrant cell signaling events; (2) why these disorders occur predominantly in females and (3) the role of microRNAs in autoimmune and inflammatory diseases.

Dr. Liwu Li

Liwu Li, Ph.D., Professor in the Department of Biological Sciences in the College of Science (lwli@vt.edu, 540-231-1433). Dr. Li's lab focuses on the molecular and cellular mechanism underlying the pathogenesis of inflammatory diseases such as sepsis and atherosclerosis.

Dr. Christopher Reilly

Christopher Reilly, Associate Professor and Discipline Chair of Physiology in the Edward Via Virginia College of Osteopathic Medicine, Adjunct faculty in the College of Veterinary Medicine (creilly@vcom.vt.edu, 540-231-5345). Dr. Reilly's lab focuses on defining the molecular mechanisms and signal transduction cascades involved in inflammation associated with lupus nephritis. His research uses both in vivo and in vitro mouse models to dissect the role of inflammatory mediators involved in disease.

Dr. Irving Coy Allen

Irving Coy Allen, Ph.D., Assistant Professor in the Department of Biomedical Sciences and Pathobiology (icallen@vt.edu, 540-231-7551).  Dr. Allen’s research is focused on deciphering the contribution of innate immune system signaling pathways in host-pathogen recognition and inflammation driven tumorigenesis. His research uses both in vitro techniques and in vivo animal models to elucidate disease pathobiology.


Virology
Dr. X.J. Meng

XJ Meng, M.D., Ph.D., University Distinguished Professor in the Department of Biomedical Sciences and Pathobiology (xjmeng@vt.edu, 540-231-6912). Dr. Meng's research interests focus on emerging and re-emerging viral diseases of human and veterinary public health importance, animal models for human viral diseases, and development of vaccines against viruses of public health and economic importance. Viruses being studied in his lab include hepatitis E virus (human, swine, and avian hepatitis E viruses), and porcine circovirus, porcine reproductive and respiratory syndrome virus.

Dr. Frank Pierson

Frank Pierson, DVM, Ph.D., Diplomate ACPV, Professor of Biosecurity and Infection Control, Department of Large Animal Clinical Sciences, Director of the Veterinary Teaching Hospital (pierson@vt.edu, 540-231-7823). Dr. Pierson's research interests and funding are broad with regard to infectious disease and vaccinology. Ongoing work is exploring the pathophysiology of siadenoviral infections and multi-factorial diseases of poultry, bioremediation of foodborne Salmonella sp., hepatitis E virus, and anti-tubercular vaccines.

Dr. Christopher Roberts

Christopher Roberts, Ph.D. Associate Professor in the Department of Biomedical Sciences and Pathobiology (pcroberts@vt.edu, 540-231-7949). Dr. Roberts has worked in the field of influenza-related research for over 20 years. He has continued to focus on influenza virus related research and has expanded his expertise to include influenza vaccine development and host pathogen interactions, particularly with respect to viral:bacterial synergistic mechanisms of respiratory disease. More recently his research has focused on understanding Th17 immune responses in the elderly by using an aged mouse model of influenza challenge.

Dr. Elankumaran Subbiah

Elankumaran Subbiah, BVSc., MVSc., Ph.D. Assistant Professor in the Department of Biomedical Sciences and Pathobiology (kumarans@vt.edu, 540-231-0761). Dr. Subbiah's research focuses on negative strand RNA viruses, their structure, function, and the diseases produced by them. He is presently studying two major negative strand RNA viruses: Newcastle disease virus (NDV) and influenza A virus.

Dr. Lijuan Yuan

Lijuan Yuan, Ph.D. Assistant Professor in the Department of Biomedical Sciences and Pathobiology (lyuan@vt.edu, 540-231-9053). Dr. Yuan's research focuses on animal models for human enteric viral diseases. Currently, she is using gnotobiotic pig models of human rotavirus and norovirus infection and disease to study the mechanism of immune modulation by probiotics and to evaluate and improve the protective efficacy of human rotavirus and norovirus vaccines. Dr. Yuan studied the immunogenicity and protective efficacy of various vaccine formulations, adjuvants, and immunization routes in gnotobiotic pig models.

Dr. Zachary Adelman

Zachary Adelman, Ph.D. Assistant Professor in the Department of Entomology (zachadel@vt.edu, 540-231-6614). Dr. Adelman's research focuses on the interactions between arthropod-borne viruses and the insect vectors responsible for their transmission to humans. His research is conducted using BSL2 and BSL3 infectious agents such as chikungunya virus, yellow fever virus, and the dengue viruses. Both invertebrate and vertebrate systems are used as animal models for human disease.

Dr. Kevin Myles

Kevin Myles, Ph.D. Assistant Professor in the Department of Entomology (mylesk@vt.edu, 540-231-6158). Dr. Myles's research focuses on small RNA-directed antiviral immune responses and he is currently using mosquito-borne alphaviruses and flaviviruses to study these innate immune responses. These viruses are ideal for studies comparing the antiviral immune responses of vertebrate and invertebrate animals, as their natural maintenance cycles involve alternating replication in both host types.


Environmental Medicine
Dr. Marion Ehrich

Marion Ehrich, Ph.D. Professor of Toxicology/Pharmacology in the Department of Biomedical Sciences and Pathobiology (marion@vt.edu, 540-231-4938). Dr. Ehrich's research examines derivatized fullerenes for their capability to ameliorate acute toxicities and decrease dermal penetration of organophosphorus (OP) surrogates for chemical threat agents (nerve 'gases'). In vitro screening has resulted in identification of several compounds that have the potential to be effective, but in vitro results need validation in animal models before they can be considered for use in people.

Dr. Terry Hrubec

Terry Hrubec, DVM, Ph.D. Assistant Professor in the Department of Anatomy in the Edward Via Virginia College of Osteopathic Medicine, Adjunct faculty in the College of Veterinary Medicine (thrubec@vcom.vt.edu, 540-231-1702). Dr. Hrubec's research focuses on determining the mechanisms regulating embryonic and fetal development to create interventions that can prevent birth defects caused by environmental teratogenic exposure. Her research uses both rats and mice to model possible human health effects from acute and chronic environmental teratogen exposure and explores ways to mitigate adverse birth outcomes.


Bacteriology
Dr. Thomas Inzana

Thomas Inzana, Ph.D. Tyler J. and Francis F. Young Chair of Bacteriology in the Department of Biomedical Sciences and Pathobiology (tinzana@vt.edu, 540-231-4692). Dr. Inzana's research encompasses molecular work on the virulence properties of bacterial pathogens, including the select agents Francisella tularensis and Brucella abortus, methicillin-resistant Staphylococcus aureus (MRSA), the bovine respiratory pathogen Histophilus somni, and the swine pathogen Haemophilus parasuis. The host immune response to these pathogens and virulence factors is investigated to develop improved vaccines and diagnostic tests. Photonic biosensors are being developed for most of these pathogens, and H. somni is being used as a model to study in vivo biofilm formation and regulatory aspects of polymicrobial infections. Vaccines for F. tularensis, H. somni, and H. parasuis are being developed based on live attenuated mutants or subunit antigens.

Dr. Nammalwar Sriranganathan

Nammalwar Sriranganathan, BVSc., MVSc., Ph.D. Professor in the Department of Biomedical Sciences and Pathobiology (nathans@vt.edu, 540-231-7171). Dr. Sriranganathan's primary goal is to develop alternate treatment strategies by improving the bioavailability of therapeutic agents and by targeting specific cells using block-copolymers and amorphous nanoparticles. Infectious diseases targeted in his research include brucellosis, tuberculosis, and salmonellosis. Dr. Sriraganathan's long-term research effort has also been focused on the development of vaccines against brucellosis in animals and humans and the development of multivalent vaccines.


Nutrition and Obesity
Josep Bassagaanya-Riera

Josep Bassagaanya-Riera, DVM, Ph.D. Associate Professor in the Virginia Bioinformatics Institute, Adjunct Professor in the Department of Biomedical Sciences and Pathobiology (jbassaga@vbi.vt.edu, 540-231-7421). Dr. Bassaganya-Riera leads the Nutritional Immunology and Molecular Nutrition Group (NIG) at VBI, which is a transdisciplinary research group working at the interface of nutrition, immunology, and inflammation. He has a demonstrated track record of biomedical research using in vitro systems, mouse and pig models of metabolic and inflammatory diseases, as well as human clinical studies. Modulating inflammation and immunity in white adipose tissue as a means of improving peripheral insulin sensitization is a major research thrust of his group.

Deborah Good

Deborah Good, Ph.D. Associate Professor in the Department of Human Nutrition, Foods, and Exercise in the College of Agriculture and Life Sciences (goodd@vt.edu, 540-231-0430). Dr. Good's laboratory studies hypothalamic gene expression, especially as it relates to the regulation of body weight, exercise, fat deposition in muscle, and motivated behaviors. Her laboratory uses animal models including transgenic and knockout mice, and cattle and has collaborations with individuals studying humans and pigs.

Matthew Hulver

Matthew Hulver, Ph.D. Assistant Professor in the Department of Human Nutrition, Foods, and Exercise in the College of Agriculture and Life Sciences (hulvermw@vt.edu, 540-231-7354). Dr. Hulver's research focuses on the role of local pro-inflammatory responses in skeletal muscle metabolic dysregulation (reduced oxidative capacity and insulin resistance). He is currently using skeletal muscle-specific TLR4 transgenic and knock-out mice as animal model systems to study the mechanisms of TLR4-mediated perturbations in skeletal muscle metabolism.

Eva Schmelz

Eva Schmelz, Ph.D. Associate Professor in the Department of Human Nutrition, Foods, and Exercise in the College of Agriculture and Life Sciences (eschmelz@vt.edu, 540-231-3649). Dr. Schmelz's work focuses on the use of dietary sphingolipids in cancer prevention. Her laboratory has published the first reports on the prevention of colon cancer by dietary complex sphingolipids. Her laboratory is especially interested in identifying the cell targets of these compounds, and the effect on low-grade inflammation that drives tumorigenesis.


Genomics
Dr. Edward Smith

Edward Smith, Ph.D. Professor in the Department of Animal and Poultry Sciences in the College of Agriculture and Life Sciences (esmith@vt.edu, 540-231-6797). Dr. Smith's research focuses on single nucleotide polymorphisms (SNPs) in eukaryotic genomes, including human and different avian species.


Neurosciences
Dr. Michelle Theus

Michelle Theus, Ph.D., Assistant professor in the Department of Biomedical Sciences and Pathobiology (mtheus@vt.edu, 540-231-0909). Dr. Theus studies the mechanism(s) by which Eph receptor tyrosine kinases regulate cerebral arteriole collateral development and injury-induced remodeling.  She uses a genetic approach to understand how Eph signaling impedes the formation of the arteriole collateral network and how this ultimately influences collateral blood flow during acute, sub-acute and chronic phases of repair in several models including focal cerebral ischemia and traumatic brain injury. The long-term goal of Dr. Thesus’s research is to identify effective, safe, and feasible drug targets that enhance revascularization of damaged CNS tissue and help promote integration of novel CNS compatible biomaterials.


University Administrators Participating in the Program:
Dr. Avery

Roger Avery, Ph.D., Senior Associate Dean of Research & Graduate Studies and
Professor of Virology, Biomedical Sciences & Pathobiology, VA-MD Vet Med.


Stipend and Benefits:

  • Annual stipend at approximately $41,000 with minimal 2 years experience
  • Tuition waiver
  • Meeting travel allowance

Eligibility:

The T32 training program is available to U.S. citizens or permanent residents with an earned D.V.M. or V.M.D. degree.


To Apply:

  • All T32 AMRV post-DVM trainees are required to enter a graduate program (M.S. or Ph.D.).
  • Prospective trainees should complete an application for graduate admission to the Biomedical and Veterinary Science (BMVS) graduate program through the Virginia Tech Graduate School online application system. Please explicitly indicate that you are applying for the "NIH T32 Post-DVM Training Program" on your application.
  • Please contact bmvsgrad@vt.edu if you have any questions regarding the application process or the T32 training program.

Blacksburg, VA:

Nestled on a plateau between the Blue Ridge and Allegheny mountains, Blacksburg is part of Montgomery County in the heart of Southwest Virginia's New River Valley. Because of its award-winning services, reasonable cost of living, safety, moderate climate, and abundant leisure activities, Blacksburg is consistently ranked among the country's best places to live and has a nationwide reputation as a well-managed, stable, and forward-looking community. Learn more about Blacksburg.